
P
b
MLE = arg min

X

(s i ,ai ,s0
i)ED

1
PEP n

Minimax Model Learning

Cameron Voloshin Nan Jiang Yisong Yue
Caltech UIUC Caltech

Abstract

We present a novel off-policy loss function for
learning a transition model in model-based
reinforcement learning. Notably, our loss
is derived from the off-policy policy evalua-
tion objective with an emphasis on correct-
ing distribution shift. Compared to previ-
ous model-based techniques, our approach al-
lows for greater robustness under model mis-
specification or distribution shift induced by
learning/evaluating policies that are distinct
from the data-generating policy. We pro-
vide a theoretical analysis and show empirical
improvements over existing model-based off-
policy evaluation methods. We provide fur-
ther analysis showing our loss can be used for
off-policy optimization (OPO) and demon-
strate its integration with more recent im-
provements in OPO.

1 Introduction

We study the problem of learning a transition model
in a batch, off-policy reinforcement learning (RL) set-
ting, i.e., of learning a function P(s'|s, a) from a pre-
collected dataset D = { (si , ai , si)}n

i=1 without further
access to the environment. Contemporary approaches
to model learning focus primarily on improving the
performance of models learned through maximum like-
lihood estimation (MLE) (Sutton, 1990; Deisenroth &
Rasmussen, 2011; Kurutach et al., 2018; Clavera et al.,
2018; Chua et al., 2018; Luo et al., 2019). The goal
of MLE is to pick the model within some model class
P that is most consistent with the observed data or,
equivalently, most likely to have generated the data.
This is done by minimizing negative log-loss (mini-

Proceedings of the 24
th

 International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s). Contact: clvoloshin@caltech.edu

mizing the KL divergence) summarized as follows:

− log(P(si|si , ai)) . (1)

A key limitation of MLE is that it focuses on picking a
good model under the data distribution while ignoring
how the model is actually used.

In an RL context, a model can be used to either learn a
policy (policy learning/optimization) or evaluate some
given policy (policy evaluation), without having to col-
lect more data from the true environment. We call
this actual objective the “decision problem.” Interact-
ing with the environment to solve the decision problem
can be difficult, expensive and dangerous, whereas a
model learned from batch data circumvents these is-
sues. Since MLE (1) does not optimize over the dis-
tribution of states induced by the policy from the de-
cision problem, it thus does not prioritize solving the
decision problem. Notable previous works that incor-
porate the decision problem into the model learning
objective are Value-Aware Model Learning (VAML)
and its variants (Farahmand et al., 2017; Farahmand,
2018; Abachi et al., 2020). These methods, however,
still define their losses w.r.t. the data distribution as
in MLE, and ignore the distribution shift from the pre-
collected data to the policy-induced distribution.

In contrast, we directly focus on requiring the model to
perform well under unknown distributions instead of
the data distribution. In other words, we are particu-
larly interested in developing approaches that directly
model the batch (offline) learning setting. As such, we
ask: “From only pre-collected data, is there a model
learning approach that naturally controls the decision
problem error?”

In this paper, we present a new loss function for model
learning that: (1) only relies on batch or offline data;
(2) takes into account the distribution shift effects;
and (3) directly relates to the performance metrics for
off-policy evaluation and learning under certain realiz-
ability assumptions. The design of our loss is inspired
by recent advances in model-free off-policy evaluation
(e.g., Liu et al., 2018; Uehara et al., 2020), which we
build upon to develop our approach.

ar
X

iv
:2

10
3.

02
08

4v
1

[c
s.

L
G

] 2
 M

ar
 2

02
1

Minimax Model Learning

2 Preliminaries

We adopt the infinite-horizon discounted MDP frame-
work specified by a tuple (S, A, P, R, γ), where S is
the state space, A is the action space, P : S ×
A → Δ(S) is the transition function, R : S × A →
Δ([−Rmax, Rmax]) is the reward function, and γ
[0, 1) is the discount factor. Let X ≡ S × A. Given
an MDP, a (stochastic) policy π : S → Δ(A) and
a starting state distribution d0 Δ(S) together de-
termine a distribution over trajectories of the form
s0, a0, r0, s1, a1, r1,..., where s0 d0, at π(st), rt
R(st, at), and st+1 P (st, at) for t ≥ 0. The perfor-
mance of policy π is given by:

J(π,P) ≡ Es d0 [VπP (s)], (2)

where, by the Bellman Equation,

Vπ

P
 (s) ≡ Ea π(·|s) [Er R(·|s,a) [r] + γEs˜ P(·|s,a) [Vπ

P

 (s˜)]] .
(3)

A useful equivalent measure of performance is:

J(π, P) = E(s,a) dP
π ,γ [Er R(·|s,a) [r]], (4)

where dPπ,γ (s, a) ≡
P ∞

t=0 γ
tdP

π ,t (s, a) is the (dis-
counted) distribution of state-action pairs induced by
running π in P and d

P

π,t Δ(X) is the distribution of
(st, at) induced by running π under P. The first term
in dPπ,γ

 is d
P

π,0 = d0. dPπ,t
 has a recursive definition that

we use in Section 3:

~
dP

π,t (s, a) = d
P

π,t−1(s˜ , a˜)P(s|s˜, a˜)π(a|s)dν(s˜ , a˜), (5)

where ν is the Lebesgue measure.

In the batch learning setting, we are given a dataset
D = {(si , ai , s0i)}ni=1 , where si dπb (s), ai πb,
and s

0

i P(·|si , ai), where πb is some behavior pol-
icy that collects the data. For convenience, we write
(s, a, s

0
) DπbP, where Dπb (s, a) = dπb (s)πb (a|s).

Let E[·] denote exact expectation and En[·] the em-
pirical approximation using the n data points of D.

Finally, we also need three classes W, V, P of functions.
W (X → R) represents ratios between state-action
occupancies, V (S → R) represents value functions
and P (X → Δ(S)) represents the class of models
(or simulators) of the true environment.

Note. Any Lemmas or Theorems presented without
proof have full proofs in the Appendix.

3 Minimax Model Learning (MML)
for Off-Policy Evaluation (OPE)

3.1 Natural Derivation

We start with the off-policy evaluation (OPE) learn-
ing objective and derive the MML loss (Def 3.1). In

Section 4, we show the loss also bounds off-policy op-
timization (OPO) error through its connection with
OPE.

OPE Decision Problem. The OPE objective is to
estimate:

"
X
∞

s0 d0

J(π, P) ≡ E γiri
ai π(·|si)

si+1 P" (·|si ,ai) , (6)
i=0 r i R(·|s,a)

the performance of an evaluation policy π in the true
environment P , using only logging data D with sam-
ples from DπbP . Solving this objective is difficult
because the actions in our dataset were chosen with
πb rather than π. Thus, any π =6 πb potentially in-
duces a “shifted” state-action distribution Dπ =6 Dπb ,
and ignoring this shift can lead to poor estimation.

Model-Based OPE. Given a model class P and a
desired evaluation policy π, we want to find a simulator
P
b

 P using only logging data D such that:

P
b

= arg min |J(π, P) − J(π, P)|. (7)
P P

Interpreting Eq. (7), we run π in P to compute J(π, P)
as a proxy to J(π, P). If we find some P P such
that |δP,P"

π | = |J(π, P) − J(π, P)| is small, then P is
a good simulator for P .

Derivation. Using (2) and (4), we have:

δ
P,P

"

π = J(π, P) − J(π, P)

= Es d0 [Vπ

P
(s)] − E(s,a) d

P "

π,γ
(·,·) [Er R(·|s,a) [r]].

Adding and subtracting E(s,a) dP "
π,γ

[VπP (s)], we have:

δ
P,P

"

π = Es d0 [Vπ
 P (s)] − E(s,a) d

P "

π,γ [Vπ
 P (s)] (8)

+E(s,a) d
P

π

"
,γ

[VπP (s) − Er R (·|s,a) [r]] . (9)

To simplify the above expression, we make the fol-
lowing observations. First, Eq. (9) can be simplified
through the Bellman equation from Eq. (3). To see
this, notice that dP"

π,γ is equivalent to some d(s)π(a|s)
for an appropriate choice of d(s). Thus,

E(s,a) dP
π

"
,γ

[Vπ
P

(s) − Er R(·|s,a) [r]]

= Es d(·) [Ea π(·|s) [Vπ
P

(s) −Er R(·|s,a) [r]]]

= Es d(·) [Ea π(·|s) [Es
r

P(·|s,a) [γVπ

P
 (s)]]]

= γE(s,a) d
P

π

"

,γ
[Es

r
P(·|s,a) [Vπ

P

 (s
0
)]].

Second, we can manipulate Eq. (8) using the definition
of dPπ,γ

 and recursive property of dPπ,t
 from Eq. (5):

V
P Vπ

P
(s˜)

π
V

π

P
(s')

(8' , ·) (s˜, ·)

P
* P

d
P

*

 π ,γ

(s, a)

D7fb

X
∞

t=1

= −

X
∞

t=0

= −γ

X
∞

t=0

= −γ

X
∞

t=0

= −γ

Cameron Voloshin, Nan Jiang, Yisong Yue

Figure 1: Visual of Eq. (10) . The error at every point
(s, a) in D πb is the difference between Vπ

P
(s˜) (induced

by following P) and Vπ
 P (s

0
) (induced by following P).

We re-weight the points (s, a) in D πb
 to mimic dP*

π ,γ .
Accumulating the errors exactly yields the OPE error
of using P as a simulator. MLE, instead, finds a P
“pointing” in the same direction as P for all points
in D πb , ignoring the discrepancy with dP*

π ,γ .

Es d0 [Vπ

P
(s)] − E(s,a) dP *

π,γ [VπP (s)]
~

γ
t

d
P

*

π ,t (s, a)Vπ

P
(s)dν (s, a)

~
γ

t
d
P

*

π ,t+1(s, a)Vπ

P
(s)dν (s, a)

~
γ

t dP *

π,t (s̃, a˜)P (s|s˜ , a˜)π(a|s)Vπ
 P (s)dν(s˜ , a˜ , s, a)

~
γ

t dP *

π,t (s, a)P (s
0
|s, a)Vπ

P
 (s

0
)dν (s, a, s

0
)

= −γE(s,a) dP
π

*
,γ

[Es' P* (·|s,a) [VπP (s0)]].

Combining the above allows us to succinctly express:

δP,P *

π = γE(s,a) dP
π

*

, γ [Es
i

P(·|s,a) [Vπ
P

(s
0
)]]

− γE(s,a) dP
π

*
,γ

[Es' P* (·|s,a) [VπP (s0)]].

Since D contains samples from D πb
 and not dP*

π ,γ , we
use importance sampling to simplify the right-hand
side of δP,P*

π to:

"
d
P

*
/\I

π,γ γ E

(
E π (s0) (s,a,s~) Dπb P

* s̃ P(·|s,a)[VπP(s̃)] − VP .
Dπb

(10)
Define w π

P
(s, a) ≡

dP

Dπb (s,a)
. If we knew wP* π,γ (s,a)

π (s, a) and

Vπ
P

 (for every P P), then we can select a P P to
directly control δP,P*

π . We encode this intuition as:

Definition 3.1. [MML Loss] w W, V V, P P,

LMML (w, V, P) =E(s,a,s
i
) D

πb (·,·)P* (·|s,a) [w (s, a) ·

(Es˜ P(·|s,a) [V (s˜)] − V (s
0
)
)

].

When unambiguous, we will drop the MML subscript.

Here we have replaced wP *

π (s, a) with w coming from
function class W and V

π

P
 with V from class V. The

function class W represents the possible distribution
shifts, while V represents the possible value functions.

With this intuition, we can formally guarantee that
J(π, P) ≈ J(π, P) under the following realizability
conditions:

Assumption 1 (Adequate Support). Dπb (s, a) > 0

whenever d P
π,γ (s, a) > 0. Define w

π

P
(s, a) ≡ dP

π,γ (s,a
) Dπb (s,a) .

Assumption 2 (OPE Realizability). For a given π ,
W × V contains at least one of (wπ

P
, V P

*

π) or (w
P*

π
, Vπ

P
)

for every P P.
Theorem 3.1 (MML & OPE). Under Assumption 2,

|J(π, P
b

) − J(π, P)| ≤ γ min max |L(w, V, P)|, (11)
P P w W,V V

where Pb = arg minP P maxw W,V V |L(w, V, P)| .

Remark 3.2. We want to choose V, W, P carefully
so that many P P satisfy L(w, V, P) = 0 and As-
sumption 2. By inspection, L(w, V, P) = 0 for any
V V, w W.

Remark 3.3. While Vπ

P V P P appears strong,
it can be verified for every P P before accessing the
data, as the condition does not depend on P . In prin-
ciple, we may redesign V to guarantee this condition.

Remark 3.4. When γ = 0, J does not depend on a
transition function, so J(π, P) = J(π, P) P P.

L(w, V, P) = 0 and Theorem 3.1 implies that the fol-
lowing learning procedure will be robust to any distri-
bution shift in W and any value function in V:

Definition 3.2 (Minimax Model Learning (MML)).

Pb = arg min max |LMML (w, V, P)|. (12)
P P w W,V V

3.2 Interpretation and Verifiability

Figure 1 gives a visual illustration of Eq. (10) which
leads to the MML Loss (Def 3.1). πb has induced an
“inbalanced” training dataset D πb

 and the importance
sampling term acts to rebalance our data because our
test dataset will be dP *

π,γ , induced by π. Because the ob-

jective is OPE, we don’t mind that Pˆ
 is different than

P so long as EP̂[VπP
ˆ] ≈EP* [V P ˆ

π]. In other words,

the size of V P ˆ

π tells us which state transitions are im-
portant to model correctly. We want to appropriately

ˆ utilize the capacity of our model class P so that P
models P when V P ˆ

π is large. When it is small, it may
be better off to ignore the error in favor of other states.

Theorem 3.1 quantifies the error incurred by evalu-
ating π in Pb instead of P , assuming Assumption 2

S x A

J(π, P) ≈ E(s,a,r) D
πb

 [wb(s, a)r]

where wb = arg min
w W

max |L MWL (w, Q)|,
Q Q

P
b

) − J(π, P)| < γ min max|L(h, P)| + γ H,
P h H

(13)
where H = maxP P minh H |L((WV) − h, P)|.

|J(π,

Minimax Model Learning

holds. For OPE, P
b

 is a reasonable proxy for P. In
this sense, MML is a principled method approach for
model-based OPE. See Appendix B.1 for a complete
proof of Thm 3.1 and Appendix B.2 for the sample
complexity analysis.

If the exploratory state distribution dπb and πb are
known then Dπb is known. In this case, we can also
verify that wπ

P W for every P P a priori. Together
with Remark 3.3, we may assume that both wπ

P W
and Vπ

P V for all P P. Consequently, only one of
V P •

π V or wP •

π W has to be realizable for Theorem
3.1 to hold.

Instead of checking for realizability apriori, we can per-

form post-verification that wπ

P b
W and Vπ

Pb
 V. To-

gether with the terms depending on P , realizability of
these are also sufficient for Theorem 3.1 to hold. This
relaxes the strong “for all P P” condition.

3.3 Comparison to Model-Free OPE

Recent model-free OPE literature (e.g., Liu et al.,
2018; Uehara et al., 2020) has similar realizability as-
sumptions to Assumption 2.

As an example, the method MWL (Uehara et al., 2020)
takes the form of:

different roles. In the model-free case, minimization
is w.r.t either W or V and maximization is w.r.t the
other. In our case, W, V are on the same (maximiza-
tion) team, while minimization is over P. This allows
us to treat W × V as a single unit, and represents
distribution-shifted value functions. A member of this

class, E data[wV] (= E (s,a) Dπb
 [
dP •

Dπb
V P π ,γ

 π (s)]), ties to-

gether the OPE estimate.

3.4 Misspecification of P , V, W

Suppose Assumption 2 does not hold and P 6
P. Define a new function h(s, a, s

0
) H =

{w (s, a)V (s
0
)|(w, V) W × V} then we redefine L:

L(h, P) =E(s,a,s
!

) D
πb (·,·)P

•
(·|s,a) [

Ex P (·|s,a) [h(s, a, x)] − h(s, a, s
0
)].

Proposition 3.5 (Misspecification discrepancy for
OPE). Let H (S × A × S → R) be a set of functions
on (s, a, s

0
) . Denote (WV) = wP •

π (s, a)Vπ

P
 (s

0
) (or,

equivalently, (WV) = wπ
P

 (s,a)V P
•

π (s0)).

requiring QP •

π to be realized to be a valid upper bound.
Here Q is analogous to our function class V where
Ea π(a|s) [Q

P •

π (s, a)] = V P
•

π (s). The loss L MWL has
no dependence on P and is therefore model-free. MQL
(Uehara et al., 2020) has analogous realizability con-
ditions to MWL.

Our loss, L MML , has the same realizability assump-
tions in addition to one related to P (and not P). As
discussed in Remark 3.3, these P-related assumptions
can be verified a priori and in principle, satisfied by re-
designing the function classes. Therefore, they do not
pose a substantial theoretical challenge. See Section 6
for a practical discussion.

An advantage of model-free approaches is that when
both wπP

•

, QP •

π are realized, they return an exact OPE
point estimate. In contrast, MML additionally re-
quires some P P that makes the loss zero for any
w W, V V. The advantage of MML is the in-
creased flexibility of a model, enabling OPO (Sec-
tion 4) and visualization of results through simulation
(leading to more transparency).

While recent model-free OPE and our method both
take a minimax approach, the classes W, V, P play

L(WV − h, P) measures the difference between h
and (WV) . Another interpretation of Prop 3.5 is if
arg maxH {(WV) • } L(h, P) = (WV) for some P P
then MML returns a value γ H below the true upper
bound, otherwise the output of MML remains the up-
perbound. This result illustrates that realizability is
sufficient but not necessary for MML to be an upper-
bound on the loss.

3.5 Application to the Online Setting

While the main focus of MML is batch OPE and OPO,
we will make a few remarks relating to the online set-
ting. In particular, if we assume we can engage in on-
line data collection then W = {1} (the constant func-
tion), representing no distribution shift since πb = π.
When VAML and MML share the same function class
V, we can show that minP maxW,V LMML (w, V, P)

2
 <

minP LV AML (V , P) for any V, P. In other words,
MML is a tighter decision-aware loss even in online
data collection. In addition, MML enables greater flex-
ibility in the choice of V. See Appendix B.4 for further
details.

Cameron Voloshin, Nan Jiang, Yisong Yue

4 Off-Policy Optimization (OPO)

4.1 Natural Derivation

In this section we examine how our MML approach can
be integrated into the policy learning/optimization ob-
jective. In this setting, the goal is to find a good policy
with respect to the true environment P without in-
teracting with P .

OPO Decision Problem. Given a policy class Π
and access to only a logging dataset D with samples
from Dπb P , find a policy π Π that is competitive
with the unknown optimal policy πP , :

πb = arg min |J (π, P) − J (π
P , , P)|. (14)

π Π

Note: No additional exploration is allowed.

Model-Based OPO. Given a model class P, we want
to find a simulator Pb P using only logging data D
and subsequently learn π

P b Π in P
b

 through any pol-
icy optimization algorithm which we call Planner(·).

Algorithm 1 Standard Model-Based OPO
Input: D = Dπb P , Modeler, Planner

1: Learn P
b ← Modeler(D)

2: Learn πb
P ← Planner(

3: return πbP

In Algorithm 1, Modeler(·) refers to any (batch) model
learning procedure. The hope for model-based OPO
is that the ideal in-simulator policy π

Pb and the ac-
tual best (true environment) policy π

P , perform com-
petitively: J (π

Pb
, P) ≈ J (π

P , , P). Hence, instead
of minimizing Eq (14) over all π Π, we can focus
Π = {πP}P P .

Derivation. Beginning with the objective, we add
zero twice:

J (πP , , P) − J (πP , P) = J (πP , , P) − J (πP , , P) | {z }
(a)

+ J (π
P , , P) − J (π

P
, P) + J (π

P
, P) − J (π

P
, P) .

{z {z
(b) (c)

Term (b) is non-positive since π
P

 is optimal in P (π
P ,

is suboptimal), so we can drop it in an upper bound.
Term (a) is the OPE estimate of πP , and term (c)
the OPE estimate of π

P
, implying that we should use

Theorem 3.1. With this intuition, we have:

Theorem 4.1 (MML & OPO). If wP ,

π ,
P ,

, wP ,

π ,
P

 W
and V

P
 , V P

π
,

π
,
P

 V for every P P then:
P ,

|J (πP , , P) − J (π
P b , P)| ≤ 2γmin

P
max
w,V

|L(w, V, P)|.

The statement also holds if, instead, wπP,
P ,

, w
π

P
 ,
P

 W
and V P

,

π ,
P ,

, V P ,

π ,
P

 V for every P P.

4.2 Interpretation and Verifiability

Theorem 4.1 compares two different policies in the
same (true) environment, since π

P b will be run in P

rather than P
b

. In contrast, Theorem 3.1 compared
the same policy in two different environments. The
derivation of Theorem 4.1 (see Appendix C.1) shows
that having a good bound on the OPE objective is
sufficient for OPO. MML shows how to learn a model
that exploits this relationship.

Furthermore, the realizability assumptions of Theorem
4.1 relax the requirements of an OPE oracle. Rather
than requiring the OPE estimate for every π , it is suffi-
cient to have the OPE estimate of π

P , and π
P

 (for ev-
ery P P) when there is a P P such that L(w, V, P)
is small for any w W , V V.

We could have instead examined the quantity
minπ |J (π

P , , P) − J (π,P)| directly from Eq (14).
What we would find is that the upper bound is
2 minP max w,V |Ed0

[V]−L(w, V, P)| and the realizabil-
ity requirements would be that Vπ

P V , wP ,
π W for

every π in some policy class. This is a much stronger
requirement than in Theorem 4.1.

For OPO, apriori verification of realizability is possible
by enumerating over P P. Whereas the target policy
π was fixed in OPE, now π

P
 varies for each P P. It

may be more practical to, as in OPE, perform post-
verification that w

π

P
,
Pb

not hold, then we can modify the function classes until
they do. This relaxes the “for every P P” condition
and leaves only a few unverifiable quantities relating
to P .

Sample complexity and function class misspecification
results for OPO can be found in Appendix C.2, C.3.

4.3 Comparison to Model-Free OPO

For minimax model-free OPO, Chen & Jiang (2019)
have analyzed a minimax variant of Fitted Q Iter-
ation (FQI) (Ernst et al., 2005), inspired by Antos
et al. (2008). FQI is a commonly used model-free
OPO method. In addition to realizability assump-
tions, these methods also maintain a completeness as-
sumption: the function class of interest is closed under
bellman update. Increasing the function class size can
only help realizability but may break completeness. It
is unknown if the completeness assumption of FQI is
removable (Chen & Jiang, 2019). MML only has real-
izability requirements.

P
b

)

W and V
π

P
,
Pb

 V. If they do

Minimax Model Learning

5 Scenarios & Considerations

In this section we investigate a few scenarios where we
can calculate the class V and W or modify the loss
based on structural knowledge of P, W, and V.

In examining the scenarios, we aim to verify that MML
gives sensible results. For example, in scenarios where
we know MLE to be optimal, MML should ideally
coincide. Indeed, we show this to be the case for
the tabular setting and Linear-Quadratic Regulators.
Other scenarios include showing that MML is compat-
ible with incorporating prior knowledge using either a
nominal dynamics model or a kernel.

The proofs for any Lemmas in this section can be found
in Appendix E.

5.1 Linear & Tabular Function Classes

When W, V, P are linear function classes then the en-
tire minimax optimization has a closed form solution.
In particular, P takes the form P = φ(s, a, s

0
)
T

 α where
φ R|S×A×S| is some basis of features with α
R|S×A×S| its parameters and (w (s, a), V (s

0
)) WV =

{ψ (s, a, s
0
)
T

 β : IIβII∞ < +∞} where ψ R|S×A×S|.

Proposition 5.1 (Linear Function classes). Let P =
φ(s, a, s

0
)
T

 α where φ R|S×A×S| is some basis of fea-
tures with α its parameters. Let (w(s, a), V (s

0
))

WV = {ψ (s, a, s
0
)
T

 β : IIβII∞ < +∞}. Then,

[f J

α_ = E
−T

φ(s, a, s
0
)ψ (s, a, s

0
)
T

 dν(s0) n En [ψ (s, a, s
0
)],

(15)
if En

[f

 φ(s, a, s
0
)ψ (s, a, s

0
)
T

 dν(s
0
)] has full rank.

The tabular setting, when the state-action space is fi-
nite, is a common special case. We can choose:

ψ (s, a, s
0
) = φ(s, a, s

0
) = ei (16)

as the i th standard basis vector where i = s|A||S| +
a|S| + s

0
. There is no model misspecification in the

tabular setting (i.e., P P), therefore P_ = P in the
case of infinite data.

Proposition 5.2 (Tabular representation). Let P =
φ(s, a, s

0
)
T

 α with φ R|S×A×S| as in Eq (16) and
α its parameters. Let (w (s, a), V (s

0
)) WV =

{φ(s, a, s
0
)
T

 β : IIβI < +∞}. Assume we have at
least one data point from every (s, a) pair. Then:

P_n (s
0
|s, a) = #

{ (s, a, s
0
) D}

{ (s, a, ·) D}
. (17)

Prop. 5.2 shows that MML and MLE coincide, even in
the finite-data regime. Both models are simply the ob-
served propensity of entering state s

0
 from tuple (s, a).

5.2 Linear Quadratic Regulator (LQR)

The Linear Quadratic Regulator (LQR) is defined as
linear transition dynamics P (s

0
|s, a) = A s+B a+w

where w is random noise and a quadratic reward func-
tion R(s, a) = s

T
 Qs + a

T
 Ra for Q, R ≥ 0 symmetric

positive semi-definite. For ease of exposition we as-
sume that w N(0, σ

2
I). We assume that (A , B)

is controllable. Exploiting the structure of this prob-
lem, we can check that every V V takes the form
V (s) = s

T
 Us + q for some symmetric semi-positive

definite U and constant q (Appendix Lemma E.1).

Furthermore, we know controllers of the form π(a|s) =
−Ks where K R

k×n
 are optimal in LQR (Bertsekas

et al., 2005). We consider determistic and therefore
misspecified models of the form P(s

0
|s, a) = As + Ba.

W is a Gaussian mixture and we can write LMML as a
function of U, K and (A, B) (Appendix Lemma E.2).

Proposition 5.3 (MML + MLE Coincide for LQR).
Let A R

n×n
, B R

n×k
, K R

k×n
. Let U Sn

be positive semi-definite. Set k = 1, a single input
system. Then,

max |LMML (K, U, (A, B))| = (A , B)
K,U

= arg min
(A,B)

Despite model misspecification, both MLE and MML
give the correct parameters (A_, B_) = (A , B). We
leave showing that MML and MLE coincide in multi-
input (k > 1) LQR systems for future work.

5.3 Residual Dynamics & Environment Shift

Suppose we already had some baseline model P0 of
P . Alternatively, we may view this as the real world
starting with (approximately) known dynamics P0 and
drifting to P . We can modify MML to incorporate
knowledge of P0 to find the residual dynamics:

Definition 5.1. [Residual MML Loss] For w
W, V V, P P,

L(w, V, P) = E(s,a,s
!

) D
πb (·,·)P (·|s,a) [w(s, a) ·

C J

Ex P0 (·|s,a) [
P0 (x|s, a) − P(x|s, a)

P0 (x|s, a)
V (x)] − V (s

0
)].

This solution form matches the intuition that having
prior knowledge in the form of P0 focuses the learning
objective on the difference between P and P0.

5.4 Incorporating Kernels

Our approach is also compatible with incorporating
kernels (which is a way of encoding domain knowledge

arg min
(A,B)

LMLE(A, B).

Cameron Voloshin, Nan Jiang, Yisong Yue

Figure 2: LQR. (Left, OPE Error) MML finds the P P with the lowest OPE error as P gets richer. Since
calculations are done in expectation, no error bars are included. (Right, Verifiability) The OPE error (smoothed)
increases with misspecification in V parametrized by e, the expected MSE between the true V P

"

π 6 V and the
approximated V_P

" π V. Nevertheless, directionally they all follow the same trajectory as P gets richer.

such as smoothness) to learn in a Reproducing Kernel
Hilbert Space (RKHS). For example, we may derive a
closed form for max(W,V) EWV L(w, V, P)

2
 when W × V

corresponds to an RKHS and use standard gradient
descent to find P_ P, making the minimax problem
much more tractable. See Appendix E.3 for a detailed
discussion on RKHS, computational issues relating to
sampling from P and alternative approaches to solving
the minimax problem.

6 Experiments

In our experiments, we seek to answer the following
questions: (1) Does MML prefer models that minimize
the OPE objective? (2) What can we expect when we
have misspecification in V? (3) How does MML per-
form against MLE and VAML in OPE? (4) Does our
approach complement modern offline RL approaches?
For this last question, we consider integrating MML
with the recently proposed MOREL (Kidambi et al.,
2020) approach for offline RL. See Appendix F.3 for
details on MOREL.

6.1 Brief Environment Description/Setup

We perform our experiments in three different do-
mains.

Linear-Quadratic Regulator (LQR). The LQR
domain is a 1D environment with stochastic dynamics
P

*
(s' | s, a). We use a finite class P consisting of de-

terministic policies. We ensure V
π

P V for all P P
by solving the equations in Appendix Lemma E.1. We
ensure WP "

π W using Appendix Equation (25).

Cartpole (Brockman et al., 2016). The reward
function is modified to be a function of angle and lo-
cation rather than 0/1 to make the OPE problem more
challenging. Each P P is a parametrized NN that
outputs a mean, and logvariance representing a nor-

mal distribution around the next state. We model the
class WV as a RKHS as in Prop E.3 with an RBF
kernel.

Inverted Pendulum (IP) (Dorobantu & Taylor,
2020). This IP environment has a Runge-Kutta(4) in-
tegrator rather than Forward Euler (Runge-Kutta(1))
as in OpenAI (Brockman et al., 2016), producing sig-
nificantly more realistic data. Each P P is a deter-
ministic model parametrized with a neural network.
We model the class WV as a RKHS as in Prop E.3
with an RBF kernel.

Further Detail A thorough description of the en-
vironments, experimental details, setup and hyperpa-
rameters can be found in Appendix F.

6.2 Results

Does MML prefer models that minimize the
OPE objective? We vary the size of the model class
Figure 2 (left) testing to see if MML will pick up on the
models which have better OPE performance. When
the sizes of |P| are small, each method selects (A

*
, B

*
)

(e.g. P(s' |s, a) = A
*

s+B
*
a), the deterministic version

of the optimal model. However, as we increase the
richness of P, MML begins to pick up on models that
are able to better evaluate π.

Two remarks are in order. In LQR, policy optimiza-
tion in (A

*
, B

*
) coincides with policy optimization in

P
*
. Therefore, if we tried to do policy optimization

in our selected model then our policy would be sub-
optimal in P

*
. Secondly, MML deliberately selects a

model other than (A
*

, B
*

) because a good OPE esti-
mate relies on appoximating the contribution from the
stochastic part of P

*
.

There is a trade-off between the OPE objective and the
OPO objective. MML’s preference is dependent on the
capacities of P , W , V. Figure 2 (left) illustrates OPE

Minimax Model Learning

Figure 3: (Cartpole, OPE Error) Comparison of
model-based approaches for OPE with function-approx.
Lower is better. MML outperforms others. Not pic-
tured: traditional model-free methods such as IS/PDIS
have error of order 3-8.

is preferred for W fixed. Appendix Figure 5 explores
the OPO objective and shows that if we increase W
then OPO becomes favored. In some sense we are
asking MML to be robust to many more OPE problems
as |W|↑ and so the performance on any single one
decreases, favoring OPO.

What can we expect when we have misspeci-
fication in V? To check verifiability in practice, we
would run π in a few P P and calculate Vπ

P
. We

would check if Vπ

P V by fitting
b
Vπ

P
 and measuring

the empirical gap E[(
b
Vπ

P
 − Vπ

P

Figure 2 (right) shows how MML performs when Vπ

P 6
V but we do have

b
Vπ

 P (s) = Vπ
 P (s) +N (0 , E) V. Since

E[(
b
Vπ

P
 − Vπ

P
)
2
] = E

2
 then e is the root-mean squared

error between the two functions. Directionally all of
the errors go down as |P| ↑, however it is clear that e
has a noticeable effect. We speculate that if this error
not distributed around zero and instead is dependent
on the state then the effects can be worse.

How does MML perform against MLE and
VAML in OPE? In addition to Figure 2 (left), Fig-
ure 3 also illustrates that our method outperforms the
other model-learning approaches in OPE. The envi-
ronment and reward function is challenging, requiring
function approximation. Despite the added complex-
ity of solving a minimax problem, doing so gives nearly
an order of magnitude improvement over MLE and
many orders over VAML. This validates that MML is
a good choice for model-learning for OPE.

Algorithm 2 OPO Algorithm (based on MOREL (Ki-
dambi et al., 2020))
Input: D, L among {MML, MLE, VAML}
1: Learn an ensemble of dynamics P1 ,. .. , P4 P

using Pi = arg minP P L(D)
2: Construct a pessimistic MDP M (see Appendix

F.3) with P(s, a) = 1 ~ 4
4 i=1 Pi (s, a).

3: π b ← PPO(M) (Best of 3) (Schulman et al., 2017)

Figure 4: (Invert. Pend., OPO Performance)
Comparison of model-based approaches for OPO with
function-approx using Algorithm 2. Higher is better.
MML performs competitively even in low data regimes.

Does our approach complement modern offline
RL approaches? We integrate MML, VAML, and
MLE with MOREL as in Algorithm 2. Consequently,
Figure 4 shows that MML performs competitively with
the other methods, achieving near-optimal perfor-
mance as the number of trajectories increases. MML
has good performance even in the low-data regime,
whereas other methods perform worse than πb. Perfor-
mance in the low-data regime is of particular interest
since sample efficiency is highly desirable.

Algorithm 2 forms a pessimistic MDP where a pol-
icy is penalized if it enters a state where there is
disagreement between P1 ,. .. , P4. Given that MML
performs well in low-data, we can reason that MML
produces models with support that stays within the
dataset D or generalize well slightly outside this set.
The other models poor performance is suggestive of
incorrect over-confidence outside of D and PPO pro-
duces a policy which takes advantage of this.

7 Other Related Work

Minimax and Model-Based RL. Rajeswaran et al.
(2020) introduce an iterative minimax approach to si-
multaneously find the optimal-policy and a model of
the environment. Despite distribution-shift correction,
online data collection is required and is not compara-
ble to MML, where we focus on the batch setting.

Batch (Offline) Model-Based RL Recent improve-
ments in batch model-based RL focus primarily on the
issue of policies taking advantage of errors in the model
(Kidambi et al., 2020; Deisenroth & Rasmussen, 2011;
Chua et al., 2018; Janner et al., 2019). These improve-
ments typically involve uncertainty quantification to
keep the agent in highly certain states to avoid model
exploitation. These improvements are independent of
the loss function involved.

)
2
] = E

2
.

Cameron Voloshin, Nan Jiang, Yisong Yue

8 Discussion and Future Work

We have presented a novel approach to learning a
model for batch, off-policy model-based reinforcement
learning. Our approach follows naturally from the def-
initions of the OPE and OPO objectives and enjoys
distributional robustness and decision-awareness. We
examined different scenarios under which our method
coincided with other methods as well as when closed
form solutions were available. We provided sample
complexity analysis and misspecification analysis. Fi-
nally, we empirically validated that our method was
competitive with current model learning approaches.

A key component throughout this paper has been the
function class W × V. Finding other interpretations for
this term may prove to be useful outside of MML and is
of interest in future work. Furthermore, MML remains
part of a two-step OPO pipeline: first learn the model,
then return the optimal policy in that model. Another
direction of future research is to have a single-shot
batch OPO objective that returns both a model and
the optimal policy simultaneously, in effect combin-
ing MML with the minimax algorithm in Rajeswaran
et al. (2020). Finally, it may be interesting to inte-
grate MML with other forms of distributionally robust
model learning, e.g., Liu et al. (2020).

Acknowledgements

Cameron Voloshin is supported in part by a Kortschak
Fellowship. This work is also supported in part by
NSF # 1645832, NSF # 1918839, and funding from
Beyond Limits. Nan Jiang is sponsored in part by
the DEVCOM Army Research Laboratory under Co-
operative Agreement W911NF-17-2-0196 (ARL IoBT
CRA). The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the Army Research Lab ora-
tory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright
notation herein.

References

Abachi, R., Ghavamzadeh, M., and massoud Farah-
mand, A. Policy-aware model learning for policy
gradient methods, 2020.

Antos, A., Szepesväri, C., and Munos, R. Learn-
ing near-optimal policies with bellman-residual min-
imization based fitted policy iteration and a single
sample path. Machine Learning, 71(1):89–129, 2008.

Bartlett, P. L. and Mendelson, S. Rademacher and
gaussian complexities: Risk bounds and structural

results. In Proceedings of the 14th Annual Confer-
ence on Computational Learning Theory and and
5th European Conference on Computational Learn-
ing Theory, Berlin, Heidelberg, 2001. Springer-
Verlag. ISBN 3540423435.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P.,
and Bertsekas, D. P. Dynamic programming and op-
timal control, volume 1. Athena scientific Belmont,
MA, 2005.

Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. Openai
gym. CoRR, abs/1606.01540, 2016.

Chen, J. and Jiang, N. Information-theoretic consid-
erations in batch reinforcement learning. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings
of the 36th International Conference on Machine
Learning, Long Beach, California, USA, 09–15 Jun
2019. PMLR.

Chua, K., Calandra, R., McAllister, R., and Levine,
S. Deep reinforcement learning in a handful of tri-
als using probabilistic dynamics models. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 31. Curran
Associates, Inc., 2018.

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., As-
four, T., and Abbeel, P. Model-based reinforcement
learning via meta-policy optimization. In 2nd An-
nual Conference on Robot Learning, CoRL 2018,
Zürich, Switzerland, 29-31 October 2018, Proceed-
ings. PMLR, 2018.

Deisenroth, M. P. and Rasmussen, C. E. Pilco: A
model-based and data-efficient approach to policy
search. In Proceedings of the 28th International
Conference on International Conference on Machine
Learning, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

Dorobantu, V. and Taylor, A. Lyapy. https://
github.com/vdorobantu/lyapy,2020.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based
batch mode reinforcement learning. J. Mach. Learn.
Res., 6:503–556, December 2005. ISSN 1532-4435.

Farahmand, A.-m. Iterative value-aware model learn-
ing. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems 31, 9072–9083. Curran Associates, Inc.,
2018.

Farahmand, A.-M., Barreto, A., and Nikovski, D.
Value-Aware Loss Function for Model-based Re-
inforcement Learning. In Singh, A. and Zhu, J.

https://github.com/vdorobantu/lyapy
https://github.com/vdorobantu/lyapy

Minimax Model Learning

(eds.), Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics, Fort
Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

Feng, Y., Li, L., and Liu, Q. A kernel loss for solv-
ing the bellman equation. In Advances in Neural
Information Processing Systems, 2019.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. Generative adversarial nets. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N. D., and
Weinberger, K. Q. (eds.), Advances in Neural Infor-
mation Processing Systems 27, 2672–2680. Curran
Associates, Inc., 2014.

Janner, M., Fu, J., Zhang, M., and Levine, S. When
to trust your model: Model-based policy optimiza-
tion. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alche´-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems
32, 12519–12530. Curran Associates, Inc., 2019.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and
Joachims, T. Morel : Model-based offline reinforce-
ment learning, 2020.

Kingma, D. P. and Ba, J. Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun,
Y. (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and
Abbeel, P. Model-ensemble trust-region policy opti-
mization. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

Liu, A., Shi, G., Chung, S.-J., Anandkumar, A., and
Yue, Y. Robust regression for safe exploration in
control. In Learning for Dynamics and Control
(L4DC), 2020.

Liu, Q., Li, L., Tang, Z., and Zhou, D. Breaking the
curse of horizon: Infinite-horizon off-policy estima-
tion. In Advances in Neural Information Processing
Systems, 2018.

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma,
T. Algorithmic framework for model-based deep re-
inforcement learning with theoretical guarantees. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

MacKay, D. J. C. Information Theory, Inference &
Learning Algorithms. Cambridge University Press,
USA, 2002. ISBN 0521642981.

Mohri, M., Rostamizadeh, A., and Talwalkar, A.
Foundations of machine learning. MIT press, 2012.

Raffin, A., Hill, A., Ernestus, M., Gleave,
A., Kanervisto, A., and Dormann, N. Sta-

ble baselines3. https://github.com/DLR-RM/
stable-baselines3, 2019.

Rajeswaran, A., Mordatch, I., and Kumar, V. A game
theoretic framework for model based reinforcement
learning, 2020.

Schaefer, F. and Anandkumar, A. Competitive gradi-
ent descent. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alche´-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems 32, 7625–7635. Curran Associates, Inc.,
2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms. CoRR, abs/1707.06347, 2017.

Sutton, R. S. Integrated architectures for learning,
planning, and reacting based on approximating dy-
namic programming. In In Proceedings of the Sev-
enth International Conference on Machine Learn-
ing. Morgan Kaufmann, 1990.

Uehara, M., Huang, J., and Jiang, N. Minimax Weight
and Q-Function Learning for Off-Policy Evaluation.
In Proceedings of the 37th International Conference
on Machine Learning, 2020.

Voloshin, C., Le, H. M., Jiang, N., and Yue, Y. Empiri-
cal study of off-policy policy evaluation for reinforce-
ment learning. arXiv preprint arXiv:1911.06854,
2019.

http://Proceedings.OpenReview.net
http://Proceedings.OpenReview.net
http://2019.OpenReview.net
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

Cameron Voloshin, Nan Jiang, Yisong Yue

Contents

C.1 Main Result

C.2 Sample Complexity for OPO

18

18
1 Introduction 1

C.3 Misspecification 19

2 Preliminaries 2

D Additional theory 20

3 Minimax Model Learning (MML) for

D.1 Necessary and sufficient conditions for

Off-Policy Evaluation (OPE) 2 uniqueness of |L(w, V, P)| = 0 20

3.1 Natural Derivation 2

E Scenarios & Considerations 21
3.2 Interpretation and Verifiability 3

E.1 Linear Function Classes 21
3.3 Comparison to Model-Free OPE 4

E.2 LQR 21
3.4 Misspecification of P, V, W 4

E.3 RKHS & Practical Implementation . . . 24
3.5 Application to the Online Setting 4

F Experiments 26
4 Off-Policy Optimization (OPO) 5

F.1 Environment Descriptions 26
4.1 Natural Derivation 5

F.1.1 LQR 26
4.2 Interpretation and Verifiability 5

F.1.2 Cartpole 26
4.3 Comparison to Model-Free OPO 5

F.1.3 Inverted Pendulum (IP) 26

5 Scenarios & Considerations 6 F.2 Experiment Descriptions 26

5.1 Linear & Tabular Function Classes . . . 6 F.2.1 LQR OPE/OPO 26

5.2 Linear Quadratic Regulator (LQR) . . . 6 F.2.2 Cartpole OPE 26

5.3 Residual Dynamics & Environment Shift 6 F.2.3 Inverted Pendulum OPO 27

5.4 Incorporating Kernels 6 F.3 MOREL 27

F.4 Additional Experiments 28

6 Experiments 7

6.1 Brief Environment Description/Setup . 7

6.2 Results 7

7 Other Related Work 8

8 Discussion and Future Work 9

A Glossary of Terms 12

B OPE 13

B.1 Main Result 13

B.2 Sample Complexity for OPE 14

B.3 Misspecification for OPE 15

B.4 Application to the Online Setting and
Brief VAML Comparison 15

C OPO 18

Minimax Model Learning

A Glossary of Terms

Table 1: Glossary of terms

Acronym Term

OPE Off Policy (Policy) Evaluation
OPO Off Policy (Policy) Optimization. Also goes by batch off-policy reinforcement learning.
S State Space
A Action Space
P Transition Function
P

* True Transition Function
R Reward Function
X State-Action Space S × A
γ Discount Factor
π Policy
J(π, P) Performance of π in P
Vπ

P
Value Function of π with respect to P

d0 Initial State Distribution
d

P,γ
π (Discounted) Distribution of State-Action Pairs Induced by Running π in P

w
P π (s,a)
π Distribution Shift (wπ

P

 (s, a) = dP,γ

Dπb (s,a))
ν Lebesgue measure
dπb Behavior state distribution
πb Behavior policy
Dπb Behavior data (dπb πb)
D Dataset containing samples from Dπb P

*

En[·] Empirical approximation using D
E[·]

V Value Function Class (e.g. Vπ

P V)
P Model Function Class (e.g. P P)
L Model Learning Loss Function
Pb Best Model w.r.t L
eH Misspecification Error
π*

P Optimal Policy in P
RKHS Reproducing Kernel Hilbert Space
LQR Linear Quadratic Regulator
IP Inverted Pendulum
MML Minimax Model Learning (Ours)
MLE Maximum Likelihood Estimation
VAML Value-Aware Model Learning

Exact expectation
W Distribution Shifts Function Class (e.g. dP

Dπ (s,a)) π (s,a)

=
X
∞

t=1

X
∞

t=0

= γ

X
∞

t=0

= γ

Cameron Voloshin, Nan Jiang, Yisong Yue

B OPE

In this section we explore the OPE results in the order in which they were presented in the main paper.

B.1 Main Result

Proof for Theorem 3.1. Assume (w
π

P*

, V
π

P
) W × V . Fix some P P. We use both definitions of J as follows

J(π, P) − J(π, P
*
) = Ed0 [Vπ

P
] − E(s,a) dP *

π,γ
,r R(·|s,a) [r]

= E(s,a) dP
π

*
,γ

[Vπ

P

 (s) − Er R(·|s,a) [r]] + Ed0 [Vπ P] − E(s,a) dP
π

*
,γ

[Vπ
 P(s)]

= E(s,a) dPπ
*
,γ

[Vπ

P

 (s) − Er R(·|s,a) [r]] −
X
∞

t=1

Z
γ

t
d
P

*

π,t (s,a)Vπ
P

(s)dν (s, a)

= E(s,a) d
P

π

*

,γ
[γEs

!
P(·|s,a) [Vπ

P

 (s
')]] − γ

X
∞

t=0

Z
γ

t
d
P

*

π,t+1(s, a)Vπ

P
(s)dν(s, a)

= γE(s,a) d
P

π

*

,γ [Es
!

P(·|s,a) [Vπ

P

 (s
'
)]] − γ

X
∞

t=0

Z
γ

t
d
P

*

π,t
(s˜ ,a˜)P

*
(s|s˜ , a˜)π(a|s)Vπ

P
(s)dν(s˜ , a˜ , s, a)

= γE(s,a) d
P

π

*

,γ [Es
!

P(·|s,a) [Vπ

P

 (s
')]] − γ

X
∞

t=0

Z
γ

t
d
P

*

π ,t (s, a)P
*

(s'|s, a)V
π
 P (s')dν(s, a, s')

= γE(s,a) d
P

π

*

,γ [Es
!

P(·|s,a) [Vπ

P
 (s

'
)]] − γE(s,a) dP *

π,γ
[Es! P * (·|s,a) [VπP (s')]]

= γE(s,a) d
P

π

*

,γ [Es
!

P(·|s,a) [Vπ

P
 (s')] − Es

!
P

*
(·|s,a) [Vπ

P
 (s')]]

= γE(s,a,s
!

) D
πb

P
*

(·|s,a) [
dP

*

π,γ (s,a)
Ex P(·|s,a) [Vπ

P
 (x)] − V

π

P
(s')]]

Dπb (s, a)

= γE(s,a,s!) DπbP* (·|s,a) [wP *
π (s,a) Ex P(·|s,a) [V π P (x)] − V

π

P
 (s')]]

= γL(wP *
π ,VπP,P),

where the first equality is definition. The second equality is addition of 0. The third equality is simplification.
The fourth equality is change of bounds. The fifth is definition. The sixth is relabeling of the integration
variables. The seventh and eighth are simplification. The ninth is importance sampling. The tenth and last is
definition. Since (w

P*

π
, V

π

P
) W × V then

|J(π,P) − J(π,P
*

)| = γ|L(wπ

P*

,Vπ

P
,P)| ≤ γ max

w W ,V V
|L(w, V, P)| ≤ γ min

P P
max

w W ,V V
|L(w, V, P)|,

where the last inequality holds because P was selected in P arbitrarily.

Now, instead, assume (wπP, V
P*

π) W × V . Fix some P P. Then, similarly,

J(π, P) − J(π, P
*
) = E(s,a) d

P

π ,γ,r R(·|s,a) [r] − Ed0
[VπP *]

= E(s,a) dP
π ,γ

[V P
*

π (s)] − Ed0 [V P *
π] − E(s,a) dP

π ,γ
[V P

*

π (s) − Er R(·|s,a) [r]]

Zγt dP
π,t (s, a) VP

*
π (s)dν (s, a) − E(s,a) dP

π ,γ
[VP

* π (s) − Er R(·|s,a) [r]]

Z
γt d

P

π,t+1(s, a)V P* π (s)dν(s, a) − E(s,a) dP
π,γ

[γEs! P* (·|s,a) [V P *
π (s')]]

Z
γ

t dP
π,t (s̃ ,a˜)P(s|s˜ , ã)π(a|s)V P

*

π (s)dν(s˜ , a˜ , s, a) − γE(s,a) dP
π,γ

[Es! P* (·|s,a) [VP *
π (s')]]

X∞

t=0

= γ

≤ |JT,m(π,
| {z }

P
b
n) − J(π, P

b
n)| + |J(π, P

b
n) − J(π, P)| (18)

| {z }

 +

Xm

Vb Pbn
π,T (s

i

0) −
1
m

i=1

XVbPbn
π,T (s

i

0) −
1

 m
i=1

(s
i

0) +
1
m

(s
i

0)

(s
i

0) − Ed0 [V Pbn
π]

(s
i

0) − Ed0 [V Pbn
π]

m 1
m

 P
b
n) − J(π, P

b
n)| =

1
m

|JT,m(π,
Xm

i=1

 ≤
1
m

Xm

i=1

Xm

i=1

Vb Pb n
π,∞

b
n V

b
π
P

,∞

Xm

i=1

Vb Pb n
π,∞

VbP
b

n
π,∞

Minimax Model Learning

Z
γ

t dP
π ,t (s, a)P(s

0
|s, a)V P *

π (s
0
)dν(s, a, s

0
) − γE(s,a) dP

π,γ [Es! P* (·|s,a)[V P *

π (s0)]]

= γE(s,a) dP
π ,γ [Es! P(·|s,a)[VP *

π (s
0
)]] − γE(s,a) dP

π ,γ [Es! P*(·|s,a)[V P
*

π (s0)]]

= γE(s,a) dP
π ,γ [Es

!
P(·|s,a)[V

P *

 π (s
0
)] − Es! P* (·|s,a)[V P *

π (s0)]]

= γE(s,a,s!) DπbP*(·|s,a)[
dP

π,γ (s, a)
Ex P(·|s,a)[V P *

π (x)] − V P *

π (s
0
)]]

Dπb (s, a)

= γE(s,a,s
!
) D

πb
P

*
(·|s,a)[wπ

P
(s,a) Ex P(·|s,a) [V

P *

π (x)] − V P
*

π (s
0
)]]

= γL(wπP,VP *

π , P),

where we follow the same steps as in the previous derivation. Since (wπ

P
, V P *

π) W × V then

π , P)| ≤ γ max |J(π, P) − J(π, P)| = γ|L(wπP, V
P *

w W,V V
|L(w, V, P)| ≤ γ min

w W,V V
|L(w, V, P)|,

P P
max

where the last inequality holds because P was selected in P arbitrarily.

B.2 Sample Complexity for OPE

P
b
n = arg minP max w,V En[...] instead of We do not have access to exact expectations, so we must work with

Pb = arg minP max w,V E[...]. Furthermore, J(π, P
b

) requires exact expectation of an infinite sum: Ed0 [
P∞

t=0 γtrt]
where we collect rt by running π in simulation P

b
. Instead, we can only estimate an empirical average over a

P
b
n: JT,m(π, Pbn) = 1 P m P T

t=0 γtrt
j , where each j indexes rollouts starting from s0 d0 and the m j =1

simulation is over P
b
n. Our OPE estimate is therefore bounded as follows:

Theorem B.1. [OPE Error] Let the functions in V and W be uniformly bounded by CV and CW respectively.
Assume the conditions of Theorem 3.1 hold and |R| ≤ Rmax, γ [0, 1) . Then, with probability 1 − δ,

|JT,m(π, P
b
n) − J(π, P)| ≤ γ min max |L(w, V, P)|

P w,V

2Rmax + 4γ Rn(W, V, P) + 1
− γ γ

T+1

2Rmax
p p

+ log(2/δ)/ (2m) + 4γCWCV log(2/δ) /n
1 − γ

where Rn(W, V, P) is the Rademacher complexity of the function class

{(s, a, s
0
) 7→w (s, a)(Ex P [V (x)] − V (s

0
)) :

w W, V V, P P}.

Proof for Theorem B.1. By definition and triangle inequality,

|JT,m(π, P
b
n) − J(π, P)| = |JT,m(π, P

b
n) − J(π, P

b
n) + J(π, P

b
n) − J(π, P)|

finite sum in

(a) (b)

Define VbπP,T (si
0) ≡PT

t=0 γtrti for some trajectory indexed by i N where rt

i
 is the reward obtained by running π

in P at time t ≤ T starting at s
i

0. For (a),

≤
2Rmax γT+1 + 2

Rmax p log(2/δ) /(2m),
1 − γ 1 − γ

(19)

= γ|L(wP

π , V

≤ γ max |L(w, V,
w,V

P
b
n)|

P
b
n , P

b
n)|

Cameron Voloshin, Nan Jiang, Yisong Yue

with probability 1 − δ, where the last inequality is definition of V
b

π,T and Hoeffding’s inequality.

For (b), by Theorem 3.1,

|J (π, P
b
n) − J (π, P)|

= γ(max
w,V |

L(w, V, P
b
n)| − max

w,V
|Ln(w, V, P

b
n)| + max

w,V
|Ln(w, V, P

b
n)| − max

w,V
|L(w, V, P

b
)| + max

w,V |
L(w, V, P

b
)|)

≤ γ (2 max
w,V,P

 ||L(w, V, P)| − |Ln(w, V, P)|| + min
P

max
w,V

|L(w, V, P)|)
~

≤ γ(2R
0

 n(W, V , P) + 2K log(2/δ) /n + minmax|L(w, V, P)|)
P w,V

~
≤ γ(4Rn (W, V , P) + 2K log(2/δ) /n + min

P
max |L(w, V, P)|) (20)
w,V

where R
0

 n(W, V, P) is the Rademacher complexity of the function class

{(s, a, s
0
) 7→ |w (s, a)(E x P [V (x)] − V (s

0
))| : w W, V V , P P}

noting that K = 2CwCV uniformly bounds |w (s, a)(E x P(·|s,a) [V (x)]−V (s
0
))| (Theorem 8 Bartlett & Mendelson

(2001)). Furthermore since absolute value is 1-Lipshitz (by reverse triangle ineq), then R0 n < 2Rn (Theorem 12
Bartlett & Mendelson (2001)) where Rn (W, V , P) is the Rademacher complexity of the function class

{(s, a, s
0
) 7→ w(s, a)(E x P(·|s,a) [V (x)] − V (s

0
))) : w W , V V , P P}.

Altogether, combining (1), (2), (3) we get our result.

The first term can be thought of as the estimate under infinite data, the second term as the penalty for using
function classes that are too rich, and the remaining terms as the price we pay for finite data/ finite calculations.

B.3 Misspecification for OPE

When the assumptions behind MML do not hold, our method underbounds the true error. The following is the
proof for this Proposition.

Proof for Prop. 3.5. We have shown already that J (π, P
b

) − J (π, P) = γL(wπ

P
, Vπ

P
, P) (= γL((WV) , P)).

Therefore, by linearity of L in H, we have

|L((WV) , P)| = |L(h, P) + L((WV) − h, P)| h H, P P
≤ |L(h, P)| + |L((WV) − h, P)|
≤ min

P
max |L(h, P)| + |L(h − (WV) , P)|

h

≤ min
P

max |L(h, P)| + max min |L((W V) − h, P)|
h P h

where eH = maxP minh |L((WV) − h, P)|. Therefore |J (π, P
b

) − J (π, P)| ≤ γ (minP maxh |L(h, P)| + eH) , as
desired.

B.4 Application to the Online Setting and Brief VAML Comparison

Algorithm 3 is the prototypical online model-based RL algorithm. In contrast to the batch setting, we allow for
online data collection. We require a function called PLANNER, which can take a model Pk and find the optimal
solution πk in Pk.

Minimax Model Learning

Algorithm 3 Online Model-Based RL

Input: π0 = πb. PLANNER(·)
1: for k = 0,1, ... , K do
2: Collect data Dk by interacting with the true environment using πk.
3: Fit Pk ← arg minP P maxw,V W,V LMML (w, V, P) where Dπb = Dk
4: Fit πk ← PLANNER(Pk)
5: return (PK, πK)

Here we show that MML lower bounds the VAML error in online model-based RL, where VAML is designed.

Proposition B.2. Let W = {1}. Then

min
P P

max
w W,V V

LMML (w, V, P)
2

 ≤ min
P P

LVAML (V , P) ,

for every V, P.

Proof. Fix P P. Then, by definition, LMML (w, V, P) = E(s,a,s,) Dπb
P * [w (s, a)(Ex P(·|s,a) [V (x)] −

V (s
0
))]. Since W = {1}, then we can eliminate this dependence and get LMML (1 , V, P) =

E(s,a,s
!

) D
πb

P
* [Ex P(·|s,a) [V (x)] − V (s

0
)]. Explicitly,

Z Z Z
LMML (1 , V, P)

2
 = (P (x|s, a)V (x)dν(x) − P (s

0
| s, a)V (s

0
)dν(s

0
) dν(s, a))

2

Z Z
= ((P (x|s, a) − P (x|s, a))V (s

0
)dν (x) dν(s, a))

2

Z Z 2

≤ (P (x|s, a) − P (x|s, a))V (x)dν(x) dν(s, a) , Cauchy Schwarz

Taking the maxV V on both sides and noting maxV

R

 f (V) ≤ R maxV f (V) for any f, V then

max
V V

Z Z 2

LMML(1, V, P)
2

 ≤ max (P(x| s, a) − P (x|s, a))V (x)dν(x) dν(s, a) (21)
V V

= LV AML (V , P) . (22)

Since we chose P arbitrarily, then Eq 21 holds for any P P. In particular, if P
b

V AML =
arg min P P LV AML (V , P) then

min
P P

max
V V

LMML(1, V, P)
2

 ≤ max
V V

LMML(1, V, P
b

V AML)
2

 ≤ min
P P

LV AML (V , P)

Prop B.2 reflects that the MML loss function is a tighter loss in the online model-based RL case than VAML. In a
sense, this reflects that MML should be the preferred decision-aware loss function even in online model-based RL.
An argument in favor of VAML is that it is more computationally tractable given an assumption that V is the set of
linear function approximators. However, if we desire to use more powerful function approximation VAML suffers
the same computational issues as MML. In general the pointwise supremum within VAML presents a substantial
computational challenge while the uniform supremum from MML is much more mild, can be formulated as a
two player game and solved via higher-order gradient descent (see Section E.3).

Lastly, VAML defines the pointwise loss with respect to the L
2

 norm of the difference between P and P .
The choice is justified in that it is computationally friendlier but it is noted that L

1
 may also be reasonable

(Farahmand et al., 2017). We show in the following example that, actually, VAML may not work with a pointwise
L1 error.

Cameron Voloshin, Nan Jiang, Yisong Yue

Example B.1. Let S = A B, a disjoint partition of the state space. For simplicity, assume no dependence on
actions. Suppose our models P = {Pα}αE [0,1] take the form

J
s' A

Pα (s'|s) =
α

1 − α s' B

Suppose also that P
*

α* P for some α
* [0, 1]. Let V = { x1 s EA (s) + y1 s EB(s)|x, y < M R

+
} be all bounded

piecewise constant value functions with IIV II∞ = M R
+

. Then the empirical VAML loss with L
1

 pointwise
distance does not choose P

*
 when α =6 21 and cannot differentiate between P

*
 and any other P P when α

*
 =

2

1
.

MML does not have this issue.

Proof. To show this, first fix P P. Then the empirical VAML loss (in expectation) is given by

Es P * [max
V

|Ex P [V (x)] − V (s)|] = α
*

max |Ex P [V (x)] − V (A)| + (1 − α
*

) max|Ex P [V (x)] − V (B)|
V V

|αx + (1 − α) y − x| + (1 − α
*

) max
x,y E [0,M]

|αx + (1 − α) y − y|
x,y E [0,M]

|(α − 1)(x − y)| + (1 − α
*

) max
x,y E [0,M]

|α(x − y)|
x,y E [0,M]

= (α
*
|α − 1| + (1 − α

*
)|α|)M

If α
*

 < .5 then the minimizer of the above quantity is α = 0, if α
*

 > .5 then the minimizer is α = 1. Therefore,
if α

* (0 , .5) (.5, 1) then VAML picks the wrong model α =6 α
*
. Additionally, in the case that α

*
 = .5 then

the loss is
M
2 for every P P. In this case, VAML with L

1
 cannot differentiate between any model; all models

are perfectly identical.

On the other hand, we repeat this process with MML:

|Es P
* [Ex P [V (x)] − V (s)]| = |α

*
(Ex P [V (x)] − V (A)) + (1 − α

*
)(Ex P [V (x)] − V (B))|

= |α
*

(αx + (1 − α) y − x) + (1 − α
*
)(αx + (1 − α) y − y)|

= |α
*

(α − 1)(x − y) + (1 − α
*

)α(x − y)|

= |α − α
*
|| x − y|

Clearly minα E [0,1] maxx,yE [0,M] |α − α
*

 ||x − y| = 0 where α = α
*
.

We do not have to worry about the choice of norm for MML because we know that the OPE error is precisely
LMML. On the other hand, as shown in the example, this is not the case for VAML.

= α
*

 max

= α max

Minimax Model Learning

C OPO

In this section we explore the OPO results in the order in which they were presented in the main paper.

C.1 Main Result

Proof for Theorem 4.1. Fix some P E P. Through addition of 0, we get

J(πP ,
,P) − J(πP, P) = J(πP, , P) − J(πP, , P)

+ J(πP, , P) − J(πP, P)
+ J(πP, P) − J(πP, P)

Since πP is optimal in P then J(πP, , P) − J(πP, P) < 0 which implies

J(πP ,
,P) − J(πP, P) < J(πP, , P) − J(πP, , P) + J(πP, P) − J(πP, P)

Taking the absolute value of both sides, triangle inequality and invoking Lemma 3.1 yields:

|J(πP, , P) − J(π
Pb
, P)| < 2γ max

w,V |
L(w, V, P

b
)| = 2γ min

P
max
w,V

|L(w, V, P)|

when w P,

P

 E W and V P,

π ,
P ,

, wP,

π ,
P

E W and VπP,
P ,

 , VπP,
P

 E V for every P E P, or alternatively wπP,
P ,

 , wπ

P
,

π
,
P , ,V P,

π ,
P

E V
for every P E P.

C.2 Sample Complexity for OPO

Since we will only have access to the empirical version P
b
n rather than P

b
, we provide the following bound

Theorem C.1 (Learning Error). Let the functions in V and W be uniformly bounded by CV and CW respectively.
Assume the conditions of Theorem 4.1 hold and |7Z| < Rmax, γ E [0, 1) . Then, with probability 1 − δ ,

|J(π
Pbn

,P) − J(πP, ,P)| < 2γ min
P

max
w,V

|L(w, V, P)|
\/

+ 8γRn(W, V , P) + 8γCWCV log(2/δ) /n

where Rn(W, V , P) is the Rademacher complexity of the function class

{ (s, a, s
0
) 7→w (s, a)(Ex P [V (x)] − V (s

0
)) :

w E W, P E P, V E V}.

Proof for Theorem C.1. By Theorem 4.1,

|J(πPbn
, P) − J(πP, , P)| < 2γ max

w,V
|L(w, V,

We have shown in the proof of Theorem 3.1 that

max |L(w, V,
w,V

P
b
n)| < min

P

\/
max |L(w, V, P)| + 4Rn(W, V, P) + 4CWCV log(2/δ) /n.
w,V

Combining the two completes the proof.

This bound has the same interpretation as in the OPO case, see Section B.2.

P
b
n)|.

P
b

) −

Cameron Voloshin, Nan Jiang, Yisong Yue

C.3 Misspecification

Similarly as in Section B.3, we show the misspecification gap for OPO in the following result.

Lemma C.2 (OPO Misspecification). Let C (S x A x S -+ R) be functions on (s, a, s
0
) . Denote (WV)P , =

w
P

,

P = wP,

π ,
P,

 (s, a)VπP,
P,

 (s
0
) and (WV) π ,

P (s, a)V
π

P
,
P

(s
0
) .

|J (π, P
b

) − J (π, P)| < 2γ
(~

P P
max min
h H |

G(h, P)| + H (23)

where H = max(maxP P min h H |G((WV)P, − h, P)|, max P P ming H |G((WV)
P

 − g, P)|).

Proof for Lemma C.2. From the proof of Theorem 4.1, J (π
P , , P) − J (π

P
,P) < J (π P , , P) − J (π P , , P) +

J (π
P

, P) − J (π
P

, P) = G(w P
,

π ,
P ,

, VπP
,P,

 , P) + G(w
P ,

π
,
P

, V
π

P
,
P

, P). Using the result from proof of Lemma 3.5,

|G(wP ,
π ,

P ,
, Vπ

P
,
P ,

, P) + G(wP ,
π ,

P ,V πP
,
P

,P)| <|G(h,P) + G((WV)P, − h, P)| + |G (g,P) + G((WV)P −g, P)|

< 2 min max |G(h, P)| + max min |G((W V)P, − h, P)|
P h H P h H

+ max
P

min |G((WV)
P − g, P)|

g H

< 2(min
P

max |G (h, P)| + H)
h H

where H = max(maxP minh |G((WV)P, − h, P)|, maxP ming |G((WV)
P

 − g, P)|). Therefore |J (π,
J (π, P)| < 2γ (minP maxh |G (h, P)| + H), as desired.

Minimax Model Learning

D Additional theory

In this section, we provide additional results that were not covered in the paper. Specifically, we show that as
we make W, V too rich then the only model with zero loss is P itself, which may not be in P.

D.1 Necessary and sufficient conditions for uniqueness of |L(w, V, P)| = 0

When W, V are in L
2

 then |L| = 0 is uniquely determined:

Lemma D.1 (Necessary and Sufficient). L(w, V, P) = 0 for all w L
2

(X, ν) = {g : f g
2

(x, a)dν(x, a) <
∞}, V L

2
(S, ν) = {f : f f

2
(x)dν(x) < ∞} if and only if P = P wherever D

πb
(s, a) =6 0.

Corollary D.2. The same result holds if w V L
2

(X × S, ν) = {h : f h
2

(x, a, x
0
)dν(x, a, x

0
) < ∞}.

Proof for Lemma D.1 and Corollary D.2. We begin with definition 5.1 and expand the expectation.

L(w, V, P) =E(s,a,s
1
) D

πb
 (· ,·)P (·|s,a)[w (s, a)

(
E x P(·|s,a) [V (x)] − V (s

0
)
)
]

= E(s,a) D
πb

 (· ,·)[w (s, a)
(

E s1 P(·|s,a) [V (s
0
)] − Es

1
P(·|s,a) [V (s

0
)]

)
]

J= D
πb

(s, a)w (s, a)(V (s
0
)(P (s

0
|s, a) − P (s

0
|s, a)) dν(s, a, s

0
) .

() Clearly if P = P then L(w, V, P) = 0. () For the other direction, suppose L(w, V, P) = 0. By assumption,
w(s, a) can take on any function in L

2
(X, ν) and therefore if L(w, V, P) = 0 then

JV (s
0
)(P (s

0
|s, a) − P (s

0
|s, a)) dν(s

0
) = 0, (24)

wherever D
πb

(s, a) =6 0. Similarly, V (s
0
) can take on any function in L

2
(S, ν) and therefore if equation (24)

holds then P = P . For the corollary, let (w, V) WV take on any function in L
2

(X × S, ν). If L(w, V, P) = 0
then P(s

0
|s, a) − P (s

0
|s, a) = 0, as desired.

In an RKHS, when the kernel corresponds to an integrally strict positive definite kernel (ISPD), P = P remains
the unique minimizer of the MML Loss:

Lemma D.3 (Realizability means zero loss even in RKHS). L (w, f, P) = 0 if and only if P = P for all
(w, V) { (w (s, a) , V (s

0
)) : (wV, wV)H k ≤ 1, w : X × A -+ R, V : X -+ R} in an RKHS with an integrally strict

positive definite (ISPD) kernel.

Proof for Lemma D.3. Uehara et al. (2020) prove an analogous result and proof here is included for reader
convenience. From Mercer’s theorem Mohri et al. (2012), there exists an orthonormal basis (φ j)∞

j =1
 of L

2
(X ×S, ν)

such that RKHS is represented as

WV =

 w V =

X
∞

j =1

b j φj (bjj)∞=1 l
2

(N) with
X
∞

j =1

b
2

j

µj
< ∞

where each µj is a positive value since kernel is ISPD. Suppose there exists some P P such that L(w, V, P) = 0
for all (w, V) WV and P =6 P . Then, by taking b j = 1 when (j = j

0
) and bj = 0 when (j =6 j

0
) for any

j0 N, we have L(φj , P) = 0 where we treat w V as a single input to L. This implies L(w, V, P) = 0 for all
w V L

2
(X × S, ν) = 0. This contradicts corollary D.2, concluding the proof.

Cameron Voloshin, Nan Jiang, Yisong Yue

E Scenarios & Considerations

In this section we give proof for the various propositions for the corresponding section in the main paper.

E.1 Linear Function Classes

Proof for Prop. 5.1. Given w (s, a)V (s
0
) = ψ (s, a, s

0
)
T

 β and P(s
0
|s, a) = φ(s, a, s

0
)
T

 α then

Ln (w, V, P) = En [Ex P [ψ (s, a, x)
T

 β] −ψ(s, a, s
0
)
T

 β],
[f 11J

= En αφ(s, a, x)
T

 ψ(s, a, x)
T

 βdν(x) − ψ(s, a, s
0
)
T

 β ,
~~ ~

= En [α
T

φ(s, a, s
0
)ψ(s, a, s

0
)
T

 dν(s
0
) β −ψ(s, a, s

0
)
T

 β],

which is linear in β. L
2

n (w, V, P) = 0 is achieved through En [αT
(f

 φ(s, a, s
0
)ψ (s, a, s

0
)
T

 dν(s
0
)
)
−ψ (s, a, s

0
)
T

] = 0.
Thus,

[f 11J −1

αb
T

 = En [ψ(s, a, s
0
)
T

]En φ(s, a, s
0
)ψ(s, a, s

0
)
T

 dν(s
0
) ,

assuming En

[f

 φ(s, a, s
0
)ψ (s, a, s

0
)
T

 dν(s
0
)] is full rank. Taking the transpose completes the proof.

Proof for Prop. 5.2. We begin with φ(s, a, s
0
) = e(s,a,s'), the (s,a,s’)-th standard basis vector and ψ = φ. Then

(
X 1 i = s|A||S| + a|S|, i = j

X (s, a) = (φ(s, a, x)φ(s, a, x)
T

)i,j = .
0 otherwise

x S

Notice that X (s, a) is a diagonal matrix and is the discrete counter-part to
f

 φ(s, a, s
0
)ψ (s, a, s

0
)
T

 dν(x). There-~
fore, En [X (s, a)] = 1

(s,a,s') D X (s, a), which is a diagonal matrix of the average number of times (s, a) N
appears in the dataset D. Similarly, En [φ(s, a, s

0
)] is the average number of times that (s, a, s

0
) appears in the

dataset D. Hence, by Prop 5.1,
#{ (s, a, s

0
) D}

#{ (s, a, x) D : x S}
.

Therefore P(s
0
|s, a) = φ(s, a, s

0
)
T

 αb = αb s,a,s' , as desired.

E.2 LQR

In order to provide proof that MML gives the LQR-optimal solution, we begin with a few Lemmas. First, we
show that the value function is quadratic.
Lemma E.1 (Value Function is Quadratic). Let st+1 = Ast + Bat + w with w N(0, σ

2
I) be the dynamics,

πK (a|s) = −Ks + wK where wK N(0, σ
2

K
I) be the policy. Let γ (0, 1] be the discount factor. Then

V (s) = s
T

 Us + q where

U = Q + K
T

 RK + γ (A − BK)
T

 U(A − BK)
1

(σ
2

K
tr(R) + γσ

2

K
tr(B

T
 UB) + γσ

2
tr(U)).

Proof for Lemma E.1. The value function is given by:

xT Ux + q = x
T

 Qx + EN(−Kx,σ2
KI) [uT

 Ru
 + γEN(Ax+Bu,σ 2I) [V (s

0
)]]

= x
T

 Qx + EN(−Kx,σ2
KI)

[uT Ru + γ(Ax + Bu)
T

 U(Ax + Bu) + γq + γσ
2
tr(U)]

= x
T

 Qx + xT KT RKx + σ
2

K tr(R) + γx
T

 (A − BK)
T

 J(A − BK)x

+ γσ
2

K tr(B
T

 UB) + γq + γσ 2tr(U)

αb s,a,s' =

q = 1 − γ

Minimax Model Learning

Thus, the quadratic terms satisfy

U = Q + K
T

 RK + γ(A − BK)
T

 U(A − BK)

and the linear term satisfies

1
(σ

2

K tr(R) + γσ
2

K tr(B
T

 UB) + γσ
*2

tr(U))

The final value is given by:

J(π, P
*
) = EN(s0 ,σ 02 I) [U] = s

T

0 Us0 + q + σ0

2
tr(U)

Existence and uniqueness of U, q is heavily studied (Bertsekas et al., 2005).

Under the same assumptions as Lemma E.1, we can simplify L into a reduced form:

Lemma E.2 (LQR Loss Simplified). In addition to the assumptions of Lemma E.1, let d0 = s0 + wd0 where
wd0 N(0, σ 2

d0 I) be the initial state distribution. Let P = As + Ba P where A R
n × n

, B R
n × k

 and (A, B)
is controllable. Let K R

k× n
represent all linear policies and U S

n

+ be all symmetric positive semi-definite
matrices.

max |L(w, V, P)|
w,V

q = 1 − γ

min
P

= min
A,B

max
K,U

X

i
γ

i
[s

T

0 (A
*

 − B
*
K)

iT
 Δ(A

*
 − B

*
K)

i
s0

+ tr(ΔΣi)] + σ
2

K tr(B
T

 UB − B
*T

 UB
*

) − σ
*2

tr(U),

where Δ = (A−BK)
T

 U(A−BK)−(A
*
−B

*
K)

T
 U(A

*
−B

*
K) and Σi = σ

*
(I +...+F

i
−1

F
(i

−1)T
)+σK (B

*
B

*T
 +

... + Fi −1B*B*T F (i− 1)T
) + σ0F

i
F

iT
 for i > 0 and Σ0 = σ0I , F = A

*
 − B

*
K.

Proof for Lemma E.2. We first show that the evolution of dynamics P
*

 under gaussian noise, with a linear
gaussian controller is a gaussian mixture

~
i
N((A

*
 − B

*
K)

i
s0, Σi), where Σi = σ

*
(I + ... + F

i −1F (i−1)T
) +

σK (B
*
B

*T
 + ... Fi −1B*B*T F (i− 1)T

) + σ0F
i
F

iT
 for i > 0 and Σ0 = σ0I , F = A

*
 − B

*
K.

It’s clear s0 N(s0, σ0

2
I), the base case. Suppose for induction sn N((A

*
 − B

*
K)

n
s0, Σn) holds for some

n ≥ 0. Then

sn+1 = A
*

sn + B
*

(−Ksn + wK) + w*

= (A
*

 − B
*
K)sn + B

*
wk + w*

 N((A
*

 − B
*
K)

n+1
s0, (A

*
 − B

*
K)Σn(A

*
 − B

*
K)

T
 + B

*
B

*T
 + σ

*
I)

= N((A
*

 − B
*

 K)
n+1

 s0, Σn+1),

completing the inductive step. Notice every step st is sampled from a gaussian distribution, therefore

dP

π,γ (s, a) =
X
∞

i=0
γ

i
N(s; F

i
s0, Σi)N(a; −Ks, σ

2

K I), (25)

Cameron Voloshin, Nan Jiang, Yisong Yue

dP "

is a gaussian mixture. Let w = π,γ

D
. We know V is quadratic, given by U S+

n
. Therefore,

min
P

max
w,V

L(w, V, P) = min
A,B

max
w,V

E(s,a) D[w[EP [V] − EP " [V]]]

= min
A,B

max
w,U

E(s,u) D[w[(As + Bu)
T

 U(As + Bu) − (A s + B u)
T

 U(A s + B u) − σ
2
tr (U)]]

= min
A,B

max
K,U

EE
i γ i N ((A " −B " K) i s 0 , Σ i) [

Eu N (− Ks,σ
2k

I)
[w [(As + Bu)

T
 U(As + Bu)

− (A s + B u)
T

 U(A s + B u) − σ
2
tr (U)]]]

= min
A,B

max
K,U

EP
i γi N ((A" −B" K)i s0 ,Σi) [sT [(A − BK)

T
 U(A − BK) − (A − B K)

T
 U(A − B K)]s

+ σ
2

Ktr (B
T

 UB) − σ
2

Ktr (B
T

 UB) − σ
2
tr (U)]

= min
A,B

max
K,U

E>
i γ

i
N ((A

"
−B

"
K)

i
s 0 , Σ i) [sT [Δ(A, B, A , B , U, K)]s + σ

2

Ktr (B
T

 UB − B
T

 UB) − σ
2
tr(U)]

= min
A,B

max
K,U

X

i

γ
i
[s

T

0 (A − B K)
iT

Δ(A − B K)
i
s0 + tr(ΔΣi)] + σ

2

Ktr (B
T

 UB − B
T

 UB) − σ
2
tr (U)

where Δ = (A − BK)
T

 U(A − BK) − (A − B K)
T

 U(A − B K).

First, Lemma E.2 supposes that there is model mismatch P 6 P since P are deterministic simulators and P is
stochastic. Second, we notice that K takes the position of w, which is to say that the policy K directly specifies
w, as expected. We will need the previous two results in the experiments. We may now prove Prop 5.3 that says
MML yields the true parameters of LQR in expectation:

Proof for Prop 5.3. Consider two linear, controllable systems with parameters P1 = (A1, B1) and P2 = (A2, B2).
Then there exists a controller K that stabilizes P1 (i.e, J(P1), K) < ∞) but destabilizes P2 (i.e, J(P2, K) = ∞).
We show this by analyzing the characteristic polynomial of both A1 − B1K and A2 − B2K. There exists
an invertible matrix T1, T2 that put (A1, B1), (A2, B2) into controllable canonical forms (CCF), respectively
Bertsekas et al. (2005). Thus, we will assume, wlog, that (A

˜
1, B

˜
1), (A

˜
2, B

˜
2) are already in CCF. Hence,

0

1 0 ... 0

0

0 0 1 ... 0

 0
A
˜
1 = ...

0

...
0

...
0

... ,
1

B
˜
1 = ..

.

−a0 −a1 −a2 ... −an−1

0
1

and

0

1 0 ... 0

0

0 0 1 ... 0

 0
A
˜
2 = ...

0

...
0

...
0

... ,
1

B
˜
2 = ..

.

−b0 −b1 −b2 ... −bn−1

0
1

We will find a controller in the form K = K1T1 = K2T2 for some K1, K2 for T1, T2 that put the systems into CCF.
Consider a desired characteristic polynomial of f (s) = (s +)

n−1
(s + λ) for , λ R

+
(> 0). This polynomial has

eigenvalues equal to − , −λ and therefore a system with this polynomial is asymptotically stable (converges to 0
exponentially fast). Take K1 = [k1,0, k1,1, ... , k 1,n−1]. Then det(sI − (A

˜
1 − B

˜
1K1)) = s

n
 + (an−1 +k1,n−1)s

n−1
 +

· · · + (a0 + k 1,0) . By selecting k1,i =
)
λ +

(
n−1

))
n−1−i

 − ai then det(sI − (A
˜
1 − B

˜
1K1)) = f (s). Hence,

((n−1
i i−1

(A
˜
1, B

˜
1) is asymototically stable with eigenvalues −λ, − for any λ, strictly positive. Therefore K = K1T1

makes the system (A1, B1) asymptotically stable.

Now we consider K2 = K1 T1T2
−1 . Let us denote T1T

−1

2 = T which is also invertible since T1, T2 are invertible.
Then by taking the last term of det(sI − (A

˜
2 − B̃2K2)), we can examine the product

f n−1
i=0 λi of the eigenvalues

of the closed loop system A
˜
2 − B

˜
2K2. Namely, b0 +

Pn−1
i=0 k1,iTi,n is the product of eigenvalues. We may simplify

n n

λi = b0 + k1,iTi,n

−1 Y

i=0

−1 X

i=0

n − 1 n − 1

Ti,n λ + n−1−i − ai i i − 1

n −1 X
= b0 +

i=0

n − 1
Ti,n

n−i

i − 1
n − 1

Ti,n

n−1−i

i

n −1 −1 n X
= b0 −

i=0

ai +
X

i=0

n −1

+λ
X

i=0

Minimax Model Learning

this via some algebra as follows:

| {z } | {z }
b¯ c

= b + λc

We may select > 0 so that c =6 0 otherwise Ti,n = 0 for all i which would contradict invertibility of T. Therefore
Qn−1

i=0 λi is linear in λ. By driving λ → ∞, then |
Qn−1

i=0 λi | → ∞ is unbounded. Select λ so that |b ̄+ λc| > 1.
By the pigeonhole principle, at least one of the eigenvalues of A

˜
2 − B

˜
2K2 must have a magnitude greater than

1 and therefore the system is unstable. Therefore the controller K2T2 = K1T1T
−1

2 T2 = K1T1 = K makes the

system (A2, B2) unstable. Hence, K simultaneously stabilizes (A1, B1) but destabilizes (A2, B2).

According to Lemma E.2, when (A, B) = (A , B) then for any K, maxU L((A, B), K, U) = maxU |σ
2
tr (U)| <

∞ since U are bounded by assumption. Furthermore, we have just shown that there always exists a K that
destabilizes any controller (A, B) =6 (A , B) while stabilizing (A , B). Therefore max K,U L((A, B), K, U) = ∞
for any system (A, B) =6 (A , B). Therefore min(A,B) maxK,U L((A, B), K, U) = (A , B).

It is well known that ordinary least squares is a consistent estimator when the noise is exogenous, as it is here.
Therefore the maximum likelihood solution also yields (A , B) in expectation.

E.3 RKHS & Practical Implementation

Since P P is a stochastic model in general, then the inner expectation of the loss in def (5.1) over P involves
sampling x from P(·|s, a) and computing the empirical average of V (x). In general this can be computationally
demanding if S is high dimensional and P does not have a closed form, requiring MCMC estimates or variational
estimates (MacKay, 2002; Goodfellow et al.). However, in practice, most parametrizations of models use nice
distributions, such as gaussians, from which sampling is efficient. This issue is similarly present in other decision-
aware literature (e.g., Farahmand et al., 2017).

The estimator based on Eq (12) requires solving a minimax problem which is often computationally challenging.
One approach might be to set-up neural networks in a GAN-like fashion and use a higher order gradient descent
(Goodfellow et al., 2014; Schaefer & Anandkumar, 2019).

If we have access to a kernel, say radial basis function (RBF), then the inner maximization over w, V has a closed
form when W × V correspond to a reproducing kernel Hilbert space (RKHS), HK with kernel K. In particular,
in similar spirit to (Liu et al., 2018; Feng et al., 2019; Uehara et al., 2020) we have

Proposition E.3 (Closed form exists in RKHS). Assume WV = {(w (s, a), V (s
0
)) : hwV, wV iH K ≤ 1, w :

X → R, V : S → R} . Let h·, ·iH K be an inner product on HK satisfying the reproducing kernel property
w(s, a)V (s

0
) = hwV, K((s, a, s

0
), ·) i H K . The term max(w,V) WV L(w, V, P)

2
 has a closed form:

max
(w,V) WV

L(w, V, P)
2

 = E(s,a,s~) D
πb

P
*
,(s˜,a˜ ,s˜~) D

πb
P

*

Ex P,x˜ P [K((s, a, x), (s˜ , a˜ , x˜))]

− 2Ex P [K((s, a, x), (s˜ , a˜ , s˜
0
))]

+ K((s, a, s
0
), (s˜ , a˜ , s˜

0
))

Proof for Prop E.3. Recall that by the reproducing property of kernel K in the RKHS space HK then hf, KiH K

Cameron Voloshin, Nan Jiang, Yisong Yue

for any f HK. Starting from definition 5.1,

L (w, V, P)2 =E(s,a,s
1

) D
πb (·,·)P* (·|s,a) [w(s, a) (Ex P(·|s,a) [V (x)] − V (s

0
)
)
]
2

= E(s,a,s
!
,x) D

πb (·,·)P* (·|s,a)P(·|s,a) [w (s, a)V (x) − w(s, a)V (s
0
)]

2

= E(s,a,s
!
,x) D

πb (·,·)P* (·|s,a)P(·|s,a) [(wV, K ((s, a, x) , ·))Hk − (wV, K ((s, a, s
0
) , ·))Hk

]
2

= (wV, (wV))
2

H k

where (wV) (·) = E(s,a,s
,
,x) D

πb (·,·)P* (·|s,a)P(·|s,a) [K ((s, a, x) , ·) −K ((s, a, s
0

, ·)]. By Cauchy-Schwarz and the fact
that wV is within a unit ball, then

max
w,V WV

L (w, f, V)
2

 = max
w,V W V

(wV, (wV))
2

H k
 = II(wV) II

2
 = ((wV) , (wV))Hk

.

Expanding,

max
w,V WV

L (w, f, V)
2

 = ((wV) , (wV))Hk

= (E(s,a,s
!
,x) D

πb (·,·)P* (·|s,a)P(·|s,a) [K ((s, a, x) , ·) − K ((s, a, s
0

, ·)] ,

E(s˜ , a˜ , s˜ ~ , x˜) D
πb (·,·)P

*
(·|s˜ , ã)P(·|s̃, ã) [K ((s̃ , a˜ , x˜) , ·) − K ((s˜ , a˜ , s˜

0
, ·)])Hk

~ ~

= Dπb
(s, a)P (s

0
|s, a)P(x|s, a)(K ((s, a, x) , ·) − K ((s, a, s

0
) , ·)) ,

f
Hk

= Dπb
(s, a)P (s

0
|s, a)P (x|s, a)Dπb (s̃ , a˜)P (s˜

0
| s˜ , a˜)P(x˜ | s˜ , a˜)

× (K ((s, a, x) , ·) − K ((s, a, s
0
) , ·) , K ((s˜ , a˜ , x˜) , ·) − K ((s˜ , a˜ , s̃0 , ·))Hk

By linearity of the inner product, the reproducing kernel property we get

max
(w,V) WV

L (w, f, V)
2

 = E(s,a,s~ ,x) D
πb P* P,(s̃,ã,s̃~ ,x̃) DπbP* P [K ((s, a, x) , (s˜ , a˜ , x˜)) − K ((s, a, x) , (s˜ , a˜ , s˜

0
))

− K ((s, a, s
0
) , (s˜ , a˜ , x˜)) + K ((s, a, s

0
) , (s˜ , a˜ , s˜

0
))]

= E(s,a,s~ ,x) D
πb P

* P,(s̃,ã,s̃~ ,x̃) DπbP* P [K ((s, a, x) , (s˜ , a˜ , x˜)) − 2K ((s, a, x) , (s˜ , a˜ , s˜
0
))

+ K ((s, a, s
0
) , (s˜ , a˜ , s˜

0
))] ,

where for the last equality we used the fact that K is symmetric.

f

Dπb
(s˜ , a˜)P (s˜

0
|s˜ , a˜)P(x˜ | s˜ , a˜)(K ((s˜ , a˜ , x˜) , ·) − K ((s˜ , a˜ , s˜

0
) , ·)) ,

Minimax Model Learning

F Experiments

F.1 Environment Descriptions

F.1.1 LQR

The LQR domain is a 1D stochastic environment with true dynamics: P
*

(s'|s, a) = s − .5a + w
*

 where w
*

N (0, .01

2
). We let x0 N (1, .1

2
). The reward function is R(s, a) = −(s + a) and γ = .9. We use a finite class P

consisting of all deterministic models P = {Px (s'|s, a) = (1 + x/10) s − (.5 + x/10)a|x [0, M]} where we vary
M {2 ,3, . .. ,19}. We write (A

*
, B

*
) = P0 (s' |s, a) = A

*
s + B

*
a, the deterministic version of P

*
.

F.1.2 Cartpole

We use the standard Cartpole benchmark (OpenAI, Brockman et al. (2016)). The state space is a tuple (x, ̇x, 8,
˙
8)

representing the position of the cart, velocity of the cart, angle of the pole and angular velocity of the pole,
respectively. The action space is discrete given by pushing the car to the left or pushing the car to the right. We
add N (0 , .001

2
) Gaussian noise to each component of the state to make the dynamics stochastic. We consider

the infinite horizon setting with γ = .98. The reward function is modified to be a function of angle and location
R(s, 8) = (2 − 8/8max) (2 − s/smax) − 1) rather than 0/1 to make the OPE problem more challenging.

F.1.3 Inverted Pendulum (IP)

We consider the infinite horizon setting with γ = .98. The state space is a tuple (8,
˙
8) representing the angle

of the pole and angular velocity of the pole, respectively. The action space A = R is continuous representing a
clockwise or counterclockwise force. The reward function is a clipped quadratic function R([8,

˙
8] , a) = min(((8+π)

mod 2π − π)
2

 + .1
˙
8

2
 + .001u

2
, 100). This IP environment has a Runge-Kutta(4) integrator (Dorobantu & Taylor,

2020) rather than Forwrd Euler and, thus, produces more realistic data. The mass of the rod is .25 and the
length .5.

F.2 Experiment Descriptions

F.2.1 LQR OPE/OPO

OPE. We aim to evaluate π (a|s) = N (1.3s, .1
2
). We ensure Vπ

P V for all P P by solving the equations in
Lemma E.1. We ensure W P

π W using Equation (25). We derive 1-d equations for VAML analogous to Lemma
E.2). Finally, we know MLE gives (A

*
, B

*
) in expectation (see Prop 5.3).

Metric: We compute |(J (π, P
b

) − J (π, P
*

))| , the OPE error.

OPO. Similarly as in OPE, we ensure that all MML realizability assumptions hold. This means as we increase
P then we have to increase the sizes of both W and V now instead of just V as in OPE. Once again MLE gives
(A

*
, B

*
) in expectation (see Prop 5.3) and we evaluate VAML using equations analogous to those in Lemma

E.2). With this, we produce Figure 5 (right). By increasing P , we also have more policies { π*P}P P we may
consider. Instead of selecting one for OPE, for each π {π

*

P}P P we calculate the OPE error. We aggregate
across all { π*P } P P by taking the average of the OPE errors and the worst-case, which can be seen in Figure 5
(left). Metric: We compute |(J (π

*

Pb
, P
b

) − J (π
*

P
, P

*
))|, the OPO error.

Note: All calculations in LQR OPE/OPO are in expectation so no error bars need be included.

Verifiability. With the same setup as in OPE, now randomly sample 100k points in the interval [−3, 3] × [−3, 3],
which is the support of the LQR system. We rerun the same experiment as in OPE except now we add w N(0 , e)
noise to V V where e {0, .2 , ... , .8, 1}. We evaluate the error |(J (π, P

b
) − J (π, P

*
))| over the 100k samples

rather than in expectation as before. We run 5 seeds and present the mean over the seeds with standard error.
We smooth the resulting mean with a moving average filter of size 3. The result can be seen in Figure 2 (right).

F.2.2 Cartpole OPE

Each P P takes the form s' N(µ(s, a) , σ (s, a)), where a NN outputs a mean, and logvariance representing a
normal distribution around the next state. Each model has a two hidden layers and with 64 units each and ReLU

Cameron Voloshin, Nan Jiang, Yisong Yue

activation with final linear layer. We generate the behavior and target policy using a near-perfect DDQN-based
policy Q with a final softmax layer and adjustable parameter τ : π (a|s) exp(Q (s, a) /τ) . The behavior policy
has τ = 1, while the target policy has τ = 1.5. We truncate all rollouts at 1000 time steps and we calculate the
true expected value using the monte-carlo average of 10000 rollouts.

We model the class WV as a RKHS as in Lemma E.3 with an RBF kernel. We do the same for VAML. The RKHS
kernel we use for MML and VAML is given by K (s, a, s

0
) = K1(s)K2 (a)K3(s

0
) and K3 (s

0
) respectively where

Ki are Gaussian Radial Basis Function (RBF) kernels with a bandwidth equal to the median of the pair-wise
distances for each coordinate (s, a, s

0
 independently) over the batch.

For MML, we sample from P a total of 5 times and take the empirical mean to calculate the expectation over P
for the RKHS formula given in E.3.

We run 20000 batches of size 128 and normalize the data over the batch. Our learning rate is 10−3
 and we use

Adam (Kingma & Ba, 2015) optimizer. The estimate we use is the mean over the last 10 batches. We run 5
random seeds per dataset size, and plot the log-relative MSE with standard error in Figure 3.

Note: These hyperparameters remain the same across the different loss functions.

Metric: We compare the methods using the log-relative MSE metric: log((
J(π, P

b
)−J(π,P))

2

(J (πb,P)−J (π,P))2), which is negative

when the OPE estimate J (π, P
b

) is superior to the on-policy estimate J (πb , P
b

). The more negative, the better

the estimate. To calculate J (π, P
b

) we run 100 trajectories in P
b

 and take the mean.

F.2.3 Inverted Pendulum OPO

We generate the behavior data using a noisy feedback-linearized controller: πb (a| s) is uniformly random with
probability .3 and is a feedback-linearized LQR controller (FLC) with probability .7 where we use the FLC
corresponding to LQR matrices Q = 2I2×2 , R = I2×2. We truncate all rollouts at 200 time steps. We fit 4
feed-forward neural networks representing P1 ,. .. , P4 where each is a deterministic model with two layers of 16
weights and a Tanh activation followed with Linear. We use Adam (Kingma & Ba, 2015) optimizer with 10−3

as the learning rate. Using different batches of size 64 on each Pi and perform 5000 iterations for each model.

The RKHS kernel we use for MML and VAML is given by K (s, a, s
0
) = K1 (s)K2 (a)K3 (s

0
) and K3(s

0
) respectively

where Ki are Gaussian Radial Basis Function (RBF) kernels with a bandwidth equal to 1.

For MML, we only sample from P once to calculate the expectation over P for the RKHS formula given in E.3,
since P is deterministic.

Now we have P (s
0
|s, a) = 1 ~4

i=1 Pi (s
0
|s, a). We calculate α = Median({~ Pj (s, a) − s

0
~2 : j 4

[1, ... , 4] , (s, a, s
0
) X D}) where X is 10000 random samples from the dataset. We form an α-USAD

(see MOREL Section F.3) and construct a pessimistic MDP (P
˜

, R
˜

) (see Section F.3). We use PPO as our policy
optimizer with the default settings from (Raffin et al., 2019). We run PPO three times in the pessimistic MDP
and take the policy that performs the best and report its performance. We keep track of the running maximum as
we increase the dataset size. We plot the mean of the running maximums over the five seeds including standard
error bars in Figure 4.

Note: These hyperparameters remain the same across the different loss functions.

Metric: We look at the performance J (π
Pb

, P) of a policy and compare it to π , learned from PPO. To calculate

J (π
Pb

, P) we run 100 trajectories in P and take the mean.

F.3 MOREL

We give a brief explanation of MOREL (Kidambi et al., 2020) and its construction. The objective of MOREL
is to make sure that the policy we learn does not take advantage of the errors in the simulator P. If there are
errors in P then a policy may think the agent can perform a particular state transition (s, a, s

0
) and R(s

0
, a

0
) has

high reward for some action a
0
. However, it’s possible that such a transition (s, a, s

0
) may not occur in the true

Minimax Model Learning

environment. Therefore, we modify our model P (s' |s, a) in the following way:

P
˜

(s' |s, a) =
Terminate episode U

α
 (s, a) = 1

P (s' |s, a) otherwise

where U
α

(s, a) = 1 if max i {1,2,3,4} IIPi (s' |s, a) − P(s' |s, a)II ≥ α, otherwise 0. In other words, we’ve modified
the transition dynamics so that we do not trust our model P unless all the Pi are in agreement. We also modify
our reward to be (

-100 U
α

 (s, a) = 1

R(s, a) otherwise

where −100 is chosen this value is well below any reward that the Inverted Pendulum environment generates.
Similarly, we penalize our policy for entering a state where we are uncertain. Together, this creates a pessimistic
MDP.

F.4 Additional Experiments

R
˜

(s, a) =

0.10 MML
0.24) MLE, VAML, (A , B

0.22
0.08

O
P

O
 E

rr
or

, |J
(

P" ,P
)

J(
 P

" ",
P

")
|

O
P

E
 E

rr
or

, |J
(

,P
)

J(
 ,

 P
*)

|

0.20

0.06 0.18

0.16

0.04
0.14

0.12
MML means 0.02
MML maxs

0.10
MLE, VAML, (A , B) means

MLE, VAML, (A , B) maxs 0.00 0.08

(

2 4 6 8 10 12 14

Number of Models, | | (_ | | _ | |)
2 4 6 8 10 12 14

Number of Models, | | (_ | | _ | |)

Figure 5: (LQR) As we increase |W | , |V | then MML is forced to be robust to too many OPE problems and
settles for the system (A

*
, B

*
) since this is the only system robust to the most OPE problems.

In the experiments for Figure 5, we consider what happens when we satisfy the realizability conditions for OPO.
As we increase |P|, we must also increase |W|, |V| because each P P induces an optimal policy π

*

P
 to which

we have to make sure wP

πP
W and VPi

πP
V for Pi P. In a sense, we are adding more OPE problems for

MML to be robust to. In particular, we now have more policies { π
*
P } P P to consider. As described earlier, for

each π {π
*

P}P P we calculate the OPE error. We aggregate across all { π*
P } P P by taking the average of the

OPE errors and the worst-case, which can be seen in Figure 5 (left). We plot the OPO error in Figure 5 (right).
What we see is that while |P| is small, MML is able to be robust to a certain number of OPE problems. But as
we increase the number of OPE problems the average and max error increases until all methods select the same
model, which is the OPO-optimal model, (A

*
, B*).

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

